Kinder können einen Q10-Mangel entwickeln

Q10 wird normalerweise in ausreichender Menge vom gesunden menschlichen Körper synthetisiert. Bei Gendefekten der Q10-Biosynthese kann es zu einem primären Q10-Mangel kommen.

Allerdings gibt es zunehmend Beweise, dass der sekundäre oder erworbene Q10-Mangel weit häufiger vorkommen könnte als der primäre, genetisch bedingte Q10-Mangel. Niedrige Konzentrationen von CoQ10 im Plasma und Serum wurden in einer Reihe von Erkrankungen, einschließlich der Phenylketonurie (PKU) (Artuch 1999), Asthma (Gazdík 2002), Migräne (Hershey 2007), Friedreich-Ataxie (Cooper 2008), zystische Fibrose (Laguna 2008) und Herzinsuffizienz (Molyneux 2008) nachgewiesen. Jedoch wurde bisher in keiner Studie ein sekundärer Q10-Mangel im Muskelgewebe gemessen.

Eine aktuelle Studie untersuchte 23 Kinder (Alter 2–16 Jahre) mit rezidivierenden Nahrungsmittelunverträglichkeiten und Allergien auf einen CoQ10-Mangel und mitochondriale Anomalien. Dazu wurden den Kindern Muskelbiopsien entnommen und auf den CoQ10-Gehalt untersucht. Ebenso wurden die Gewebeproben pathologisch untersucht und die Aktivitäten der Enzyme der mitochondrialen Atmungskette gemessen. In einer Gruppe von 9 älteren Kindern (Alter >10 Jahre; n = 9) wurde ein signifikant

verminderter Q10-Spiegel im Muskel gemessen als in einer anderen Gruppe von 14 jüngeren Kindern (Alter <10 y; n = 14, (p = 0,001) und 16 gesunden Kindern der Kontroll-Gruppe (p<0.05).

Die MRC-Aktivitäten waren signifikant niedriger in der Gruppe der älteren Kinder mit niedrigeren Q10-Werten als in der Gruppe der jüngeren Kinder (p<0.05). Der Muskel Q10-Spiegel der Studienteilnehmer war signifikant mit der Dauer der Erkrankung (p = 0,012, n = 23, R2 = 0,69) korreliert. Kinder mit rezidivierenden Nahrungsmittelunverträglichkeiten und Allergien können also einen muskulären Q10-Mangel mit zunehmender Krankheit entwickeln.

Die Q10-Biosynthese von Kindern im Alter von 10–16 Jahren scheint entweder nicht auszureichen oder ist durch die Unterversorgung mit essentiellen Nährstoffen durch die lang andauernde Krankheit eingeschränkt, um einen normalen Q10-Spiegel im Blut und im Muskel aufrecht zu erhalten.

Literatur

Michael V. Miles, Philip E. Putnam, Lili Miles, Peter H. Tang, Antonius J. DeGrauw, Brenda L. Wong, Paul S. Horn, Heather L. Foote, Marc E. Rothenberg Acquired coenzyme Q10 deficiency in children with recurrent food intolerance and allergies Mitochondrion 11, 127–135 (2011)